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FORWARD

This summary report is a collection of four separate

progress reports prepared under three contracts, which are

all sponsored by the Office of Naval Research in Arlington,

Virginia. This report contains the results of investiga-

tions into the app- *tion of the maximum entropy method

(MEM), a high resolL -ion, frequency and wavenumber estima-

tion technique. The report also contains a description of

two new, stable, high resolution spectral. estimation tech-

niques that is provided in the final report section. Many

examples of wavenumber spectral patterns for all investiga-

ted techniques are included throughout the report.

The maximum entropy method is also known as the maxi-

mum entropy spectral analysis (MESA) technique, and both

names are used in the report. Many MEM wavenumber spectral

patterns are demonstrated using both simulated and measured

radar signal and noise data. Methods for obtaining stable

MEM wavenumber spectra are discussed, broadband signal de-

tection using the MEM prediction error transform (PET) is

discussed, and doppler radar narrowband signal detection is

demonstrated using the MEM technique. It is also shown

that MEM cannot be applied to randomly sampled data.

The two new, stable. high resolution, spectral esti-

mation techniques discussed in the final report section,

are name the Wiener -King and the Fourier spectral estimation

techniques. The two new tý:chniques have a similar deriva-

tion based upon the Wiener prediction filter, but the two

techniques are otherwise quite different. Further develop-

ment of the techniques and measurement of the technique spec-

tral characteristics is recommended for subsequent investiga-

tion.
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STABLE MESA ANTENNA PATTERNS

i. INTRODUCTION

A. Wavenumber Power Spectra

Power spectral analysis techniques are applicable to the

processing of spatial multi-channel antenna data, since computed

antenna patterns are actually wavenumber power spectra, P(k). The

wavenumber k is a function of 6, the signal angle of incidence to

the antenna as follows:

k = (27/X)SIN(9)

Because an antenna array is a collector of spatially sampled data,

any power spectral technique which is designed for such discrete

data sets is applicable for computing antenna patterns.

B. Hiqh Resolution Power Soectral Techniques

During recent years several high resolution power spectral

techniques have been developed (or rediscovered) for use with dis-

crete data sets. Some of the techniques are: the maximum entropy

method (1) , the autoregressive model (2), the mt ving average mcdel (3),

the Yule-Walker technique (4) , and the maximum Liklihood method (5)

of these techniques the maximum entropy, autoregressive, and Yule-Walker

techniques are all pole models, the moving average technique is an all
zero model, and maxiumum liklihood is only a criteria function applicable
to any model.. Most of these methods are described in a tutoral review

article (6). These particular methods have also been investigated

and compared in two reports (7), (8) in which the best results were

achieved with the maximum entropy method,.

More conventional high resolution Fourier methods have

also been recently developed (9), (10) , (11) , but have not been so

thoroughly irivestigated. As a consequence, in this paper several

m-thuds ace investigated for applyingj the maximum entropy spectral



analysis technique (MESA) to the processing of spatial, uniformly

sampled data.

C. Application of MESA

Several methods of applying MESA to spatial data are inves-

tigated. In particular apatial data, which is simulated for an 8

element linear antenna array, is processed with MESA and the Burg

technique (1). The Burg technique i-s a recursive method for eval-

uating the MESA filter weights, which substantially reduces the

number of calculations required of the more conventional inverse

matrix evaluation method.

MESA antenna patterns (wavenumber spectra) may be computed

upon the collection of the set of 8 spatial data samples at any

instant of time. Such "snapshot" patterns are inherently inconsistent

and unstable. However it is possible to compute stable MESA antenna

patterns using one of several stablization techniques. It remains

only to determine which technique provides sufficient stability for

an acceptable averaging period without destroying the desired high

resolution property which is characteristic of MESA. Averaging

techniques which are investigated employ a time average of one of

the follwoing sets of variables:

a.) filter weights

b.) prediction errors

c.) covariance matrix

d. "snapshot" patterns

And as an alternative to averaging, stablizatic may also be achieved

with use of time adaptive filter weights. In particular a set of

adaptive filter weights, which are defined as proportional to the

prediction error (12), are utilized in conjunction with a proportion-

ality constant (convergence parameter) to comprise a stable, adaptive

MESA nrocessing technicue.

II. THE MAXlMUM CNTPOPY METH1OD

'he MEWS.A techniique, as The name implimni, originated (I) by

".U.



maximizing the entrcopy of a signal mixed with noise. However, the

same filter weights may also be derived (13) by whitening the Weiner

prediction error filter as specified for discreet data samples (14).

rhe resulting maximum entropy wavenumber spectra P(k) is given as

follows:

PN

P(k)
n N-y exp (iknAx) 2

where

N = number of filter weights (PNiM)

M = number of data samples

PN = total noise power

AX = antenna element spacing
YNYn = nth prediction error filter weight of a set of N weights.

The variables of eqn. (1) , which are computed using a

set of equations known as the "Burg technique", are listed as follows:

a.) Total Noise Power r

P 1 = r 6 (ro0 is the data set autocorrelation function)

S= n [ ,(n+ 1) 2] for (l1<nS<N) (2)+ n[ 1 (n+l

b.) Filter Weights -(nN+1
n

1 N = 1.0

Yn : N + Y N+I YN- * for (2Zi<N) (3)
n = n ~PlCni

3



M-N N* N
-2 (B ) F,

-2 a N+n
N+l _ _ _ _ _ _ _ _ _

SN+l for (l•N<-M-l) (4)N+1 -N N 2 N 22

niI (BKn) + (FN+n)

C.) Forward Prediction Error FN

11

F X for (l<K<-M)K+! = K+I

FN+t N+I N + r N
K X N+ BK-N K for (N+lIK<M) (5)

N
d.) Backward Prediction Error BK

K

1BK XK for (l•K<M-l)

B Nl N+1 N NN+I (Y F+, + B for ISK-)(6)BK y tY+) * FK+N BK

N+l K+N Kfo (lKMN(6

where the Kth data sample X K for (IlK<M)

III. MESA SNAPSHOTS

It is possible to compute an antenna pattern with MESA

using only one set of M data samples all recorded at the samc instant

of time. For example, consider one set of 8 data samples collected

with 8 unformly spaced antennas. The Burg technique equations, eqns.

(1-6) are initially evaluatAd for N=l and M=8, and then evaluated

repeatedly for increasing unit incremental values of N up to the

desired value of N provided that (<7)

4



However the final value of N must be such that (NSSN) where NS is

the number of signals present in the given data set XE.

Consider a MESA snapshot pattern evaluated for N=4,M=8

where the Burg technique equations are evaluated repeatedly for

(lfN•4). A MESA snapshot pattern of one signal incident at +10

degrees '0 degrees is broadside to the antenna) and a signal-to-

noise ratio of 15 dB is shown in Fig. Ia. The 8 data points contain

Guassian, white noise, simulated using a set of 8 random numbers

computed for a generator "seed" value of 1 (IR=I). Another MESA

snapshot shown in Fig. lb, is computed using a different set of 8

random numbers for which IR=2.

The single signal is located accurately at +10 degrees
(within, 13.5 degrees) in both MESA snapshots of Fig. 1. The side

peaks, which are randomly located, occur at different positions

in the two snapshots. The total number of peaks, which represent

the poles of eqn. (1) , is always less or equal to the value of N,

the number of filter weights. Since the two independent data sets

used~in the computed antenna patterns of Fig. 1 are considered to be

recorded at two different instances of time, MESA snapshots are

clearly time -ariant when computed with short (M=8) data sets. It

is evident that some stablizing technique is needed in the application

of MESA to c,hoLt data sets, so that computed MESA antenna patterns
are invariant and repeatable in Lime for stationary data.

IV. MESA INSTABILITIES

Besides the side peak locatiorn Instability depicted by

Fig. 1, another instability associated with MESA is the inaccurate

representation of signal peaks. Signal peaks may not be accurately

locat<d at very Low signal-to-noise ratios or when other signals

are present at adjacent angles. Nearby signals cause distortion

in both sicnal location and in relative signal peak height. It

has oeen noted (15) that isolated MESA signal peaks are not linearly

related to the signal-to-noise ratios, but the actual relationship t

5
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haF not been demonstrated. Both the power leve± and relativw phase II
of adjacent signals affect the accuracy of The MESA power spectra.

Such signal instabilities have been noted previously (14).

The noise field associated with a multi-channel antcnna

array may also be a source of signal distortion. Split signal peaks

are a common problem with MESA snapshots (16). An example of how Ii
such problems arise is depicted in Figs. 2 and 3. The MESA snapshot

of Fig. 2 is computed using only S complex noise data points (no

signal present) and a 5 point filter (N=5). The MESA snapshot of

Fig. 2 has two large noise peaks near 0 and 10 degrees. When a

signal having a 10 dB signal-to-noise ratio is introduced into the

same noise field (IR=5), at an angle of +5 degrees, the signal is

ambiguously represented in the MESA snapshot of Fig. 3 by a split

peak (two adjacent peaks). The split peak which is observed in

Fig. 3 rear the signal angle of +5 degrees is apparently due to

interference of the two noise -,eaks which are preser' at angles

near the signal. Since the complex noise peaks are randomly located,

split peaks caused by such noise interference may be eliminated

with some form of averaging within the MESA algorithm. The same

set of complex noise data (IR=5) is used in the evaluation of several

averaging techniques.

V. AVER7GING TECHNIQUES

A. Averagc;d Filter Weights

It is not necessary to average a complete set of filter"N+ 1
weights. yn where (ln•N), since all filter weights forN+I 

ii

(2<-n<-N) are a function of the last filter weight Y,+, as given by

eqn. (3). The last filter weight, which is given by eqn. (4) is
computed and averaged over L data sets. N+1 I L N-l

N+! k1 N+IYN+l L k =1 YN+l (kflt)

In all, a total of (L.M) data points are utilized in computing such

an averaged MESA antenna pattern.

An average MESA antenna pattern utilizing an averaged1

8 ..
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V
last filter weignt is shown in Fig. 4 for one sigani incident at

5 degrees and a SNR of 10 dB. Peak splitting is eliminated in

the example of Fig. 4 with an average of only two filter weights

(L=2) and utilizing a total of only 16 data points. The 16 data

points include the same complex noise data set used in the example

of Fig. 2 (IR=5). The signal is very prominent in the averaged

MESA pattern of Fig. 4, although the signal peak is slightly displaced

at an angle of +4.5 degrees denoting an inaccuracy of 0.5 degrees.

Further averaging beyond 1=I0 provides little or no improvement.

The averaged MESA antenna pattern for L=10, which is shown in Fig. 5,

has nearly white noise. The noise peaks are very subdued and are

almost eliminated, consequently very little improvement is possible.

But the signal peak, which is considerably sharpened, remains at

+4.5 degrees with an inaccuracy of 0.5 degrees.

Resolution capability is demonstrated by the averaged

MESA antenna pattern of Fig. 6, where two signals with a SNR of

13 dB each signal, each element, are just resolved. Best resolution,

which is depicted in Fig. 6, is achieved for N=7 and L=20. The two a
signals as detected in Fig. 6 are located closer together at angles

of 0.5 and 4.5 degrees. The technique of averaging filter weights

is a simple and fast stablization technique which results in good

resolution and detection capability for a relatively small number of

repetitive calculations utilizing 160 (L'M) data points.

B. Averaged Prediction Errors

An averaged IIESA antenna pattern may also be computed

by averaging the forward and backward prediction errors as defined

by eqns. (5) and (6). Prediction errors for filter sizes 1 - N

are all calculated in the Burg technique, however best results

are achieved by averaging only the set of orediction- errors for

th-e specified filter size N as follows:

F n Is (Lhnt) for (N-SnSM)ik

" II
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RN 1 •
n L q klt) for (lfn•M-N)

Both prediction error averaging and filter weight averaging are

comoaratively simple and fast averaging techniques, hut the two

averaged antenna patterns are quite dissimilar.

An averaged MESA antenna pattern computed by averaging

the prediction errors is shown in Fig. 7 where the split peak

(obtained for L=l, Fig. 3) is eliminated by averaging wýLh only

one additional data set (L=2) . The result of further averaging

is shown for L=10 in Fig. 8. The filter size (N=5) and the

complex data set for IR=5 are the same as used in all previous

examples of averaged MESA patterns. It is evident by observation

of Figs. 7 and 8 that averaging of prediction errors does not

whiten the noise and does not enhance the SNR, but peak splitting

is eliminated. In Fig. 8 the signal peak is located at +4 degrees

for an error of one deoree. Further averaging beyond L=10 does

not improve the antenna pattern for one signal and an 8 element

array.

Prediction errors are averaged in Fig. 9 for two signals incident

at 0 and +6 degrees. The two signals are well resolved and the

SNR is improved for L=30. One signal is accurately located at

0 degrees, while the second signal which is located at +4.5 degrees

is in error by 1.5 degrees. The SNR is significantly improved,

more so than for the single signal of Figs. 7 and 8.

C. Averaged Covariance Matrix

While not so obvious, the equations of the Burg technique

do contain elements of the covariance matrix. These

elements may be averaged and incorporated into the Burg technique

equations without altering the utilization or the characteristics
.N+I

ot the Burg technique. The only independent filter weight T'
Nt 1

which is defined by eqn. (4) of the Burg technique, is a function

of the forward and backward iredictiton ei yors, F N and 9 N
N+I

15
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Products of the prediction errors may be considered as functions U
of the covariance matrix elements by considering the original

definition as follows:

Forward prediction error

N N
F N+I E Yn Xn+I-n+l (7)

n=!

Backward prediction error

N N N= 2 (-y1•) X 4-- (8)1B I n--- (Y. t I+n-i
nzrl

wk ere yN = 1.0

The last filter weight yN4+1 of eqn. (4) may be expressed as the
N+1

ratio of two functions, TOP and BOTM, as follows:

YN+l = -2 TOP/BOTM

where

M-N N N
TOP= F (BF (i

I== 1

BOTM [N(FN 2 + (B) (10)

IN+I' I

insertion ot the prediction error definitions eqns.

(7) and (8) into eqns. (9) and (10) and re-ordering the summations

yields the desired functional form as fnllcws:

TOP = 2 [ "1 M XN+f-1+I N / N* ) j _
I=in=! k

19 4
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N N NN
TOP = 7 2 yM 'y r (N-M-n+2)

m=l n=1

where M-N

r (N-m--n+2) = E2 +-~ x x~-

M-N [rNJ YNNJ ,NABOTM L E (y)E

n=NN /Y) Iý
N N* m- In* I

m=l 1 Nm-

N N ýN (Y* N N N* NIBOTM T 2 yn (y r rn-m) + 2 n i r~m-n)
m=1 n=1 m m=1 n=1 n

wheire1

N-N*
r(n-m) Z X XN+hff+l IxN4I.n+1 (12)

T=1

N-N*
r~m-n) E 2 X 1 1- xI~n-I (13)

It is apparent that the autorcorrelation coefficients defined by

eqns. (11), (12) and (13) may be averaged as follows: i
Cr(N-ni-n+2) = 2p2 X(ký,jt) X (ký t) (1d)

11 k=1 N+I-rn-rl I 4 niI

20h



r (rn-n) F I X (bit) X (kAt) (5

M-N
I=1 k--1 N+T-m+1 N+I-n+1

r(m--n) 7 1 -' X(kAt) X(kAt) (1]6)
1=1 k=l I+m-i I+n-l

The autocorrelation coefficients (eqns. (ii), (12) and (13)) are

elements of the covariance matrix for the data set X1 , X, X

The averaged covariance matrix elements given by eqns (14), (15) and

(16) may be utilized to compute the last filter weight P and an

averaged MESA antenna pattern.

The results due to averaging of the covariance matrix

are observed in Fig. 10 where the split peak shown in Fig. 3 is

eliminated with only one additional data set (L=2). Also the noise

is considerably whiter which greatly improves the SNR. Further

averaging provides little additional improvement as noted by Fig. 11,

where for L=10 the noise appears slightly whiter and the SNR is

slightly enhanced over the results shown in Fig. 10.

Ewo signals located at 0 and +6 degrees are well resolved

in Fig. 12 with covariance matrix averaging, for L=10 and an input

SNR of 13 dB each signal. The background noise is substantially

reduced although it is not as white as the noise that appears in

Fig. 11. Averaging of the covariance matrix elements is, as demon-

strated, an excellent averaging and stablization technique.

D. Averaged MESA Snapshots

Individual MESA antenna patterns, which are referred to

as "snapshots" (e.g. Fig. la, lb), may be averaged in order to

obtain a stable antenna pattern. This method has been utilized (14)

5uccessfully using optimal filter sizes. However, if the optimal

filter size cannot be determined, a fixed filter size may be selectccd

'21
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for computing all the individual MESA snapshot antenna patterns.

The best resolution is always achieved using the largest possible

filter size (N=M-l). However, the larger filter sizes are also

the most unstable. Consequently, while an average of many MESA

snapshots improves stability, the resultant stable pattern may not

be a very accurate antenna pattern.

Averaging results for two filter sizes (N=5 and N=7)

are demonstrated in the three following examples. A siple average

of two MESA snapshots (L=2) is shown in Fig. 13 for one signal

incident at 5 degrees with a SNR of 10 dB. The split peak that W

occurs for L=1 (Fig. 3) is still present in the average of two -

snapshots. Ilowever, thern, is improvement in the SNR. There are

of course twice the number of peaks (10) as expected for two MESA v
snapshots having five filter weights (N=5) each. The consequence

of further averaging is demonstrated in Fig. 14 where 30 antenna

patterns (computed for a signal incident at 5 degrees with a SNR

of 10 dB) are averaged. There is further improvement in the signal -

peak definition and accuracy; the signal is located at +4 degrees, -.

for an error of one degree. The SNR is improved substantially.

Irn Fig. 15 the resultant -"orage of MESA antenna patterns for two

signals incident at 0 and +6 degrees is disappointing as the two

signal peaks are not very well defined. Instead there are four

strong peaks, two of which are in error. There is of course._

improvement in the SNR, but the resolution characteristics are very

poor. In the example of Fi. 1.5, averaged MESA snapshots all have

the maximum number (7) of filter weights. Better results have

been achieved (14) using an optimal filter size, however the

optimal filter size can only be computed if the incident signal

angles are known.

VI. ADAPTIVE FILTER WEIGHTS

While the MESA technique is inherently adaptive, other

adaptive methods which have been demonstrated (17, 18) have simple

procedures for updating the filter weights. One such procedure (12)

25
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increases the filter weiahts in proportion to the correlation of

the prediction error with the data set. For example, a filter -

weight W(k) computed at time kAt may be updated at a later time I
(k+l)At to give W(k+l) as follows:

M ,A•

W(k+l) = W(k) + e (k)X n(k) (17) 4
n=1

where the correlation is taken over all computed prediction errors

en(k). The prediction errors are defined as follows:

nA

en (k) Xn(k) - n (k) (18)

for data samples Xn (k) and predicted values Xn(k). The proportionality

constant is denoted by the convergence psrameter v.

In order to incoporate this procedure into dhe MESA

technique, a first set of filter weights is computed in the usual

manner as defined by eqns. (3) and (4). Subsequent filter weights
N

F (k+I) •ay then be computed according to eqn. (17) as follows:nr

M-N NI'n(k+l) n (k) + ]j E eN (k1 x (k) (19)
n=l

where the prediction error is actually the sum of the forward and

backward predic ion errors over all poss'hLi (o-N) errors as follows:

N N NC (k) Fn (k) I- B (k) (20)

However, with use oF the Biurr t'chniuruc, on lv the last f1; lter weigqht

I e e(1 be r'illput-• ivd with en( (1. 9) , since a] 1 * vhe- t i I to: w'i jhts

29 *
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(naN) are dependent upon CN according to eqn. (3).NIAs the prediction error is whitened, the additive adaptive

component is reduced, since the correlation of a whiter prediction

error with the data set is smaller. Consequently, the adaptive

filter weights may converge to become a whitening filter.
The result of updating MESA filter weights is illustrated

in Fig. 16 where an "adapted" MESA antenna pattern is hewn for one

signal incident at +5 degrees, SNR=l0 dE, and L=2. The "adapted"

pattern for L=2 is of course quite similar to the computed MESA

snapshot (L=l) shown in Fie. 3, since the filter weights have been

modified only once. The split peak is still present for L=2 in

Fig. 16, but with further adaption the split peak is eliminated as

shown in Fig. 17 for L=10. However, the SNR is not improved, although

three noise peaks have been reduced. As observed in Fog. 17 the

noise has remained peaked even after ten adaptions. Obviously the

adaption method does not tend to whiten the noise, and consequently

the results are most disappointing.

In another application of the adaptive raethcd, two

signals incident at 0 and +6 degrees are resolved in con adaption:

(L=10) as shown in Fig. 18, where the SNP is 13 dB for each signal.

One signal is located accurately at +6 degrees while the other

signal is located at +1.5 degrees with an error of 1.5 degrees.

The SNR is improved with respect to the original (L=l) MESA

snapshot of Fig. 3. However, the noise is not whitened in the

adaptive process as had been anticipated.

The results from using adaptive filter weights with

MESA are very disappointing, and in addition the value of a con-

vergence parameter must be specified. In the three preceding
examples of the adaptive technique the value of the convergence 7.

parameter p is quite critica. If v! is too small, there is little

improvement in the computed antenna pattern, and if p is too large,

there may be considerable distortion of the signal peak. 1
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VII. RESOLUTION

Of the five stablization methods examined, only two

appear to preserve and enhance the desirable MESA characteristic

of whitening the noise. The resolution capability of both whitening,

stablization methods is demonstrated in one example of two signals

separatet by four degrees, at -2 and +2 degrees, with equal SNR
values of 20 dB each antenna element.

A stablized antenna pattern computed by averaging the

covariance matrix is shown in Fig. 19, where the two sigrnals are

not resolved, but only one signal peak is detected at +0.5 degrees.

However both signals are identified in Fig. 20, where the antenna

pattern is computed by averaging the filter weights using a short

average of L=5. The same short average is used in computing both

antenna patterns in Figs. 19 and 20 since further averagiic7, which

does appear to improve signal detection, only seives to reuuce the

resolution capability. However, some averaging ir necessary in order

to obtain a stable, reliable antenna pattern. The noise is whiter

in Fig. 19, but the resolution is best in Fig. 20. While the two

characteristics appear to be somewhat incompatible, it is necessary

that good resolution be achieved with stable, reliable antenna

patterns.

I

34

,,I
[ -- I - I [ I1 I it



Ui

-. a

AId

a-0ZP

1M

GO r Ci

* U

. .........

011:1 elm



________ 1I

LI W
F- . - -

CL

23 3

4i4
90 NI h~lUc S/tilk



VIII. CONCLUSIONS

Split signal peaks, which are a common occurence in

MESA snapshot patterns, are shown to be a consequence of noise

interference. Such noise interference is virtually eliminated

wikh use of the proposed stablization methods.

Of the five stablization techniques examined, two have

excellent characteristics, one other is only somewhat satisfactory,

and two were very disappointing. An average of filter weights

and an average of the covariance matrix are both very useful

stablization methods. Both methods serve to whiten the noise

and greatly improve the SNR. In addition, split signal peaks

were not observed with use of either aveiaged filter weights

or averaged covariance matrix elements. Further testing of

these two averaging methods is clearly justified. Hopefully,

resolution and SNR properties of these two excellent averaging

and stablization techniques will be specifically determined in

future research ef Lrts.

It is doubtful that any of the other three examined

stablization methods are worthy of further consideration.

Neither the averaged prediction errors nor the adaptive filter

weights served to whiten the noise, and the averaged MESA patterns

proved to be most unstable.

In the one example of two signals separated four

dejrees the MESA antenna pattern computed by averaging filter-

weights provided the best signal resolution. However, many suc:h

exampLes need to be accumulated in order to determine the resolution

characteristics of the recommended MESA stablization methods.

17
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BROADBAND SIGNAL DETECTION WIT-1 TIl'E SCOT AND SCOT-PET

1.0 INTRODUCTION

1.1 Background

The crosscorreiation technique is useful for

detecting broadband radar pulses. However, it is well

known that the crosscorrelation technique is adversely

affected by narrowband interference or narrowband signals

transmitted by radar surveillance systems. Consequently,

the crosscorrelation peak (due to the broadband signal)

may be obscured by a sinus;oidal modulation of the cross-

correlation function caused by the presence of strong

narrowband components. I
Other signal processing techniques may not be

so adversely affected by the presence of narrowband signial

components. Carter, et al. (1) have provided one snapshot

example, where a broadband signal in the presence of three

nt rrowband signals is not detected by the crosscorrelation

function, but is readiLly detected with the smoothed coher-

ence transform (SCOT).

The SCOT is the Fourier transform of a cress-

power spectral function, which has c frequency dependent

normalization. The normalization serves to whiten the

crosspower spectra and the.reby minimize the effect of

narrawband signal interference. While the SCOT may pro-

vide improved broadband signal detection, it may he possible

to improve the SCOt, as defined by Carter, et al., by esti-

mating the crosspower function with use ot the prcdiciton

error transform (PET). King (2) has demonstrated that the
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autocorrelation function of broadband signals may be mo2:e

accurately evaluated using the PET.

1.2 Comparative Evaluation

In order to compare and evaluate the SCOT, SCOT-

PET, and the cross-correlation function, a set of receiver

operating characteristic (ROC) curves are computed using

data simulated for two time dependent function x(t) and y(t). For

each function the simulated data contains a coherent, white,

broadband signal, incoherent, white broadband noise, and

four coherent, narrowband non-harmonic si.gnals.

2.)0 THEORY

i

2.1 Crosscorrelation

The crosscorrelation function may be defined in

the time domain by a convolution integral, or in the fre-

quency domain by the Fourier transform. Since it is con-

venient in this investigation to simulate sensor data in

the frequency d]omain, '-he crosscorrelation function is

defined as follows:

p (T) = f G (f) ei2 df (i)
y _ xy

where G (f) is the crosspower spectral. density function.
xy

The crosscorrelation may be normalized by the following

equation:

•y()
ij C) = -- (2)

XY ( ) (0) P (0)
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where

G (x) f G (f)ei2f 7df (3)

ýx ') . G (f)ei 2 Tf -cdf (4)

where %x(T) and 4y(,u) are the autocorrelation functions for

the respective signals x(t) and y(t) and G.(f) and Gy (f) are

the auto power spectra evaluated for tha respective signals

x(t) and y(t). The normalized crosscorrelation as defined

by eqn. (2) is evaluated for comparison with the SCOT, which

is also a norma.lized function.

2.2 Smoothed Coherence Transform (SCOT)

The SCOT is defined by Carter et al. (1) a,. I
follows:

C([) : / W(f)y(f)e fdf (5) I
where W(E) i½ a weighting function of choice, and Y(f)

is the crosspower spectral density function with a frequency

dependent normalizati on. The spectral function is defined

as follows:

Y(f) __f__ (6)

/G x M (f)- (f)

where G (f) , ( (f) and G (f) are the crosspower and auto-xy x y

power spectral denýýity functicois evaluated for the respective
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I
signals x(t) and y(t). For the applications considered in

this investigation all power spectral density functions are U
defined in the frequency domain. S

2.3 The SCOT-PET Function

The aintocorrelation function may be represented

by the prediction error transform (PET) as demonstrated by

King (2) and in a similar manner the crosscorrelation and

SCOT functions may also be represented by PET. Actuall.y,

PET is simply an inverse Fourier transform, which has a

derivation based upon a prediction error function. When

appliedI tc SCOT, the cross-spectral function y(f) is esti-

mated or predicted with a discrete convolution filter, and

a prediction error is defined in the frequency domain.

The maximum entropy power spectra has a similar PET repre-

sentation based uponl a prediction error defined in the

time domain.

The PET may be a useful representation of a function 3
that is derivable from a Fourier transformation. The PET

representation is useful only if the transformed function

(such as yMf))is known over a limited region in the time

or frequency domains. fn order to derive the PET the

transformed function must also be a predictable (non-random)

function or have predictable components.

The cros;s-power spectral function y (1) has a

predictable, p('ricdi c modulation given by1.

i 2TfTe

where T is the time delay between two broadband signals

X(t) and x(t+T) which have a common, coherent, broadband

component. If the periodic modulation is well defined

in a low noise environment over a sufficient spectral

interval, then the Fourier transform of the modul-,ting

component, exp(i2ifT) , is a well defined, detectable .I?

fnction centered about T in the time domain. However,

-43-
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if noise or other interferinig components are present in the

cross power spectral function y(f), then the SCOT function,

which is defined by the Fourier Transform, may not provide

a well defined SINC function representative of the coherent,

broadband signal component. When interference or noisy
components are present, or when the cross-power spectral

function y(f) is known only over a limited bandwidth, then

the periodic modulation component of y(f) may be better

defined with use of the prediction filter an as follows:

NYf =: nZL, Yf~ (7)
Yf n=1 0Qf-n

where y. is the discrete representation (N components) of

the function y(f). A prediction error ef may be defined by

the expression

ef = Yf -f (8)

and a new filter hbn the prediction error filter, may be

introducted as follows:

Ne bN (9)

f-n=n Yf-n

if it is recalled that the SCOT, C(T) , is defined as the

i'ourier Lransform of y (f) , then the Fourier transform of

eqn. (9) results in the following expression:
NI

N N -i2rtn(Af)
E- = C( e (b0)

n=0

where EN is the Fouier transform of ef. The SCOT function

is defined by solving eqn. (10) as follows:
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CZ() N bN e-i2Trtn(Af) (1)

n

The SCOT, as defined by eqn. (1i), is the inverse of the

Fourier transform of the predtction error filter b n. Then
inverse Fourier transform solution is called the prediction

error transform, because its derivation is a result of the I

definition and application of the prediction error filter.
N

The prediction error filter coefficients, b,
may be evaluated by squaring and minimizing the error

given by eqn. (9). The solutions for the coefficients
Nb and the .onstant E have been formulated by King (3)
n Nwith use of the Burg technique. The solution agrees with

that obtained by Burg (4), who found the unknown coefficients

by maximizing the entropy. Solutions for EN and bN are an
set of iterative equations listed as follows:

E] =r 2  (12a)
0

( 2 B zero delay autocorrelation coefficient

0

of data set yf consisting of M data samples)

E E N(+lJ (12b)
EN.1 = N [1 + (N+Il(1b

N
bI _ 1.0 (13a)

M-N+ 1Z ( ) ý aj+N
SN+I j= l-2 (13b)*
Sb+i M-N+1 N- 3 (2b)

Z 0 + (a +

N+l N N+! ) lbN+ b + - b" (13c)
n n N+l N-n+2)
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The forward prediction errors :;, and the backward orodic-

tion errors BN are defined as a function of the known, cross- V
power spectral data set Yf as follows:

j+i : (14o.)

0ýN,+l b N+I B .i ,+ aN (1b

N+l NI N N

N+l j-N 3 (14b)
l = Y. (15a)

*
(bN+ i) •jN + !*(%

3.0 DATA SIMULATION

Since the crosscorrelation, SCOT, and SCOT-PET

functions must necessarily be evaluated in succession and

repeatedly in order to plot a set of ROC curves, it is

wise to simulate data in the frequency domain if possible,

so as tu prevent repeated transformations of data sets

otherwise simulated in the time domain. Both the cross-

correlation and ýSCOT functions require a representation

of the c,osspower spectral function J (t). The spectral

function Cx (f) may he expressed very simply by assuming
xy

that the broadband and narrowband signal componenus are p
steady state signals such that

Gxy(f) fx C (f) 1i2f4 4 G0 N ei2nfT (16)

where C. (f) [- the ql]toPcn.,cr 'sccti3 a Uf the coherent br, ad-

band comnmoorient and CG is the auLtuewer of the coherent narrow-

band component and the time delay hoti the funciens x(.t)

and yL) .i sT seconds. Since it is assumed that the £ g.nals i

:(t) and Y(t) both contain incoherent, broadband components,

- 46 - I•-
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the respective autopower spectral functions GC () and

G (f) are given by:
7

G (f) = G I(t) + GB(f) + G±

(17)

G (f) = G (f) + G (f) + G
y I B

where the incoherent broadband components G (f) is assumed

to be of equal power for both x(t) and y(t) W
The signal component spectra may take any form

over a given bandwidth, but in order to establish a standard

for future ROC curve comparisons, all broadband spectra

(incohei ant and coherent) are defined to be uniform (white;

spectra over an arbitrary bandwidth. By assuming white r
broadband spectra, the whitening effect of frequency depen-

dent normalization (used in the SCOT function) is minimized.

Consequently, the improvement in signal detection, provided

by the SCOT, is a minimal improvement due only to the

normalization of the narrowband components.

The broadband spectral components are assumed

to have signal amDlitudes with Gaussian distributions such

that, W
G (f) = .15 ln(l/RI) (18)

G (f) = 0 2 ln i/B ) (19)BB B

whoe -e and RB are uniformly distributed random numbers. t

NsInmes arp a.qsign(d hv arhil-rari Iv ]t--ing

o = 1.0

and by defining a broadband power SNR, as follows:

1SR 10 Bog(/ 2 C

BBSNR =In B

-4 *7 - a
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Similarly, a narrowband SNR is defined with

respect to unit power so that,

NBSNR := 10. Lcg( N) (21)

It remains only to specify values of the cross-
correlation normalization functions (o) and t (o) as follows:

x y
1

(o) = I [I(f) + GBdf + GN

(22)

t5 C(0) 1 [G+Bi t N, I
where the spectral components are arbitrarily defined to

exist over a spectral band from -1 to +1. Since identical

component power levels are assumed in both signals x(t) and

y(t),

y (o) = Px(o) (23)

The crosspower spectral functions xy(f), xy(f)

and the autopower functions Gx (f), Gy (f), x (o), y (o) are

all specified by the preceding equations for given values

of BBFNR and NBSNR. The crosscorrelation, SCOT, and SCOT-

PET ar.e Fourier or Prediction Error transforms of the

defined crosspower and autopower spectral functions as

defined by eqns. (2), (5), (6) and (11). A set of ROC

curves may be constructed by re-evaluating The cross-

correlation, SCOT, and SCOT-PFT functions repeatedly, and

counting the false-alarm peaks and signal peaks above

specific threshold values.

4.0 EXAMPLES OF CROSSPOWER FUNCTIONS

The complex, crosspower spectral function xy (f)

is computed and plotted in Figs. 1, 2 and 3. The spectral

function consists of white, broadband, coherent and incoherent

I
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components and four equal power narrowband components. The

magnitude function -Y (f) is observed in Fig. I for 128

computed points, and for a broadband SNR U 1 55 dB, and a

narrowband SNR = 20 dB. The real parr of yxy(f) is shown

for 128 computed points and the same SNR values in Fig. 2.

The real part of xy (f) is also shown in Fig. 3 for 1283

computed points, but with the BBSNR = -20 dD and the

NBSNR = 10 dB.

"The low frequency modulation observed in Fig. 2

is not real, but is rather due to a sampling rate which i.s.

inadequate for display purposes, although it is adequate

for computational purposes. The higher frequency componlent

i 2 Tr fTe

is well defined in Fig. 2, but not so visible in Fig. 3

due to the large difference in PBSNR. Of course when the

BBSNR is reduced as in Fig. 3, the tour narrowband compo--

nents are more visible.
I•_.

5.0 EXAMPLES OF

CROSSCORRELATION, SCOT, AND SCOT-PET T'IME FUNCTIONS

The normalized crosscorralator time function

(in decibel units) is shown in C'g. 4 for a time delay of

-0. 3 sec., RBSNR = -20 dE, ind four narrowband componnnts

Sof 10 dB each. The broadband signal] peak is visible at the I

time delay of -(1.3 sec., but only slightly above the

largest clutter peaks. The SCOT time function (in decibel

units) computed for the same SNR values (as used in Fig. 4)

has a more prominent signal peak as observed in Fig. 5.

The signal peak height is the only noticable diffure-nce

between the crosscorrelator awl SCOT time functions. The

clutter patterns for each time function are identical,

because the broadnand signal and noilse spectra are uniform

(white) spectral distributions T'he clutter patterns would

_.49-



be very different if the broadband spectra were not uniformly

(non-white) distribuied, because the SCOT has a frequency

dependent normalization. Consequently, the detection charac-

teristics of the SCOT and SCOT-PET functions are expected

to improve significantly for non-white brnadband spectral

functions.

The SCOT-PET time function, which is computed for

the same SNR parameters used in Figs. 4 and 5, is shown

plotted in decibels i.i Fig. 6. The signal peak is even

more prominent at the time delay of -0.3 sec., and fewer

clutter peaks are observed than in the two previous time

functions. Based upon the three detector time functions"

shown in Figs. 4 - 6, the SCOT-PET time function appears

to offer the best signal detection capability.

6.0 ROCC CURVES

6.1 Construction Based Upon 100 Time Functions

One set of time functions is insufficient evi-

dence to form judgment, so a set of receiver operating

characteristic (ROC) curves are constructed based upon

100 sets of computed time functions. The results are

shown in Figs. 7, 8 and 9. The ROC curves are constructed

for false alarm probabilities between .01 and 1.0. Lower

values of the false alarm probability would require that

many more correlation, SCOT, nd SCOT-PET tine functions

would necessarily be computed. While the range of false

alarm probabilities investigated are not necessarily of

practical value, they are adequate for comparing the three

di~fferen~t deotors. Tile set of three ROC curves are con-

:structed for a BBSNE = -25 dB and a NBSNR = 10 di (for each

of four NB signals). The crosscorrelation, SCOT, and SCOT-

PET ROC curves are shown in Figs. 7, 8 and 9 resjzectivelx'.

Of the three ROC curves shown the SCOT has the best detection

'a probbilities. Of course the lower false alarm probabilities

I" -50-
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are usually of more interest in underwater acoustics appli-

cations, but only for detection probabilites above 0.5.

The SCOT-PET ROC curve has the lowest false alarm proba-

bility for the detection probability of 0.5.

The constructed ROC curves are more reliable in

regions of high false alarm orobabilities due to the high

density of data collected in those regions. Consider that

data points with a detection probability of 1.0 are based

upon 100 signal detections whereas a data point representing

a detection prob-ability of 0.01 is based upon only one

detected signal.

6.2 Ot]ier BBSNR Values

Two other sets of ROC curves are constructed for

BBSNR values of -40 dB and -20 dB to illustrate the similari-

ties and differences of the three broadband signal detectors

with changing BBSNR values. Again, four narrowband signals

having NBSNR = 10 dB each are employed in constructing the

ROC curves. In order to minimize computing time and costs,

these and other ROC curves are constructed from only 25

sets of time functions. However, these ROC curves are pre-

sented only to indicate trends due to parameter variation.

In Fig. 1i the crosscorrelator, SCOT and SCOT-PET ROC curves

are shown on the same graph for a BBSNR = -40 dB. The cross-

correlator and SCOT ROC curves are nearly identical for all

false alarm probabilities, whereas the SCOT-PET ROC curve

has shifted toward higher false alarms. Detection perform-

ance has deteriorated significantly for the SCOT and even

more so for the SCOT-PET. H(jiever, the detection perform-

ance has changed only slightly for the crosscorrelator,

Apparently, th2 SCOT approaches the crosscorrelator perform-

ance and the SCOT-PET performance deteriorates toward

lower detection probabilities with decreasing BBSUR values.

The set of ROC curves constructed for BBSNR = -20 dB

is shown in Fig. 11. The SCOT-PET ROC curve clearly indicates

-5__-



superior detection performance at lower false alarm proba-

bilities, although the SCOT is also considerably better than

the crosscorrelator for lower false alarm probabilities.

Again the crosscorrelator ROC curve hazs changed only slightly

toward an improved detection performance. It is apparent

that for the BBSNR values investigated, the crosscorrelator

detection performancu is inadequace for applications requiring

a low false alarm probability. But both the SCOT and SCOT-

PET may have useful detection characteristics in regions of

low false alarm probabilities fnr BDSNR values of -25 dB or

lower. However, this investigation does not examine detr'c-

tion performance capability in regions of low false alarms.

6.3 Partially Coherent Broadband Noise

All previous discussions and examples have assumed

that the broadband noise (occurring in the signals x(t) and

y(t) is incoherent. But complete incoherence is unlikly in

most radar clutter environments. For example, low level

partially coherent, directional, broadband signals may be

present in the atmospheric clutter or in receiver channels. There-

fore, a set or ROC curves are shown in Fig. 12 for a BBSNR = -25 KB

and four narrcwband components having a NBSNR 1 10 dB each. The

ROC curves of Fig. 12 indicate that the detection performance

of all three detectors has deteriorated, but by very different

amounts. The SCOT-PET has suffered the most pe-rformance deteri-

oration, while the crosscorrelator has only suffered a slight

deterioration. While the SCOT detection performance is dimin-

ished by the noise partial coherence, the SCOT detection perform-

ance remains superior to that of the crosscorrelator.

7. 0 SUMMARY

The broadband signal detection performance of the
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crosscorrelator, SCOT, and the SCOT-PET have been compared

for an environment containing four strong, interfering,

narrowband signal components, and strong, independent,

broadband noise. Under such conditions, the crosscorrelator

exhibits poor, but stable detection performance, whereas

the SCOT and SCOT--PET appear to have useful detecti-n charac-

teristics in regions of low false alarm probabilities. -4

However, the SCOT and SCOT-PET detection performance is

inhibited by increasing noise levels and increasing noise

coherence. The SCOT-PET has the best detection performance

for low and incoherent noise conditions, but the SCOT

detection performance becomes superior as noise levels and

noise coherence increases.

Unfortunately, the constructed ROC curves do

not indicate the actual detection performance of the SCOT

and SCOT-PET in regions of very low false alarm probabilities.

Most detector applications require very low false alarm proba-

bilities. However, the constructed ROC curves do show that

the SCOT and SCOT-PET have application in the presence of

str,.ung, narrowband signal components, which very severely

degrade the detection performance of the crosscorrelator.

Both the SCOT and SCOT-PET will have even better

detection capability in the presence of non-white, bhoad

band noise. Also, the detect±_n performance of the SCOT-

PET may be improved further with use of larger filter sizes

and when fewer cycles of the modulation component
jwt

e

are present. These initial conclusions indicate that the

SCOT and SCOT-PET deserve serious consideration as broad-

band sig*LAl detectors, and that their detection character-

istics tshould be investigated further.

Lim
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RESOLUTION AND DETECTION CHARACTERISTICS

OF THE MAXIMUM ENTROPY METHOD

1.0 Introduction j
Investigations of the maximum entropy method (MEM) V

nearly always provide an examination of the technique and its A

properties with the use of simulated data. It is thought

that this report describes one of the earliest investigations

of MEM using actual radar signals that are received with a

uniform, linear, Un!:enna array. Stable MEM wavenumber spectra

that are computed using the actual data apparently have the

same high resolution that has been so often demonstrated with

simulated data. Simulated data cannot include all the charac-

teristics of actual radar data, which is usually strongly ani-

sotropic in wavenumber and time variant. Therefore, tests

of the MEM that use actual radar data ar'e most significant in

demonstrating the usefulness and accuracy ot Y,'M.

Since the MEN is effective in whitening a spectra, Vt

it may be useful for detecting radar sicgnals that are often

onscured by powerful hut anisotropic radar clutter. The ,MEM

is demonstrated to indeed be a l[kely candidate for further

study as a detector of weak radar signas present in a doppler

radar receiver.

2.0 Radar Data
The MEM and MI,M teochniquies are ippl]ed Lu acti ia 1

r

radar data that is collected by a 14 sensor linear array

wi tfhin a laboratcory environment. Two sG urces , each having

power levels of 4 3 dB above the -iveraged backcground radlat Lice,

are located aL 18 and 22 degrees ftlo'n Lie degre e radial

which is norma I to th, linear ar:ray. The sen0sor Irlay aeel

radcie sources ar: beoth Lb )c.tcd wi tihin an anir) echoic room ,.wh lLch

sui ta1ir1tJa1ly redllcoes specular waill riIi1,,Liens. iiewl've

-67- 4
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the non-specular reflectiors which are detected by the array

make up a highly colored background wavenumber spectrum.

Receiver noise und sensor phase distortion are preseit, buu

are unknown spectral quantities.

The 14 sensor array data is collected as (I-Q pair)

data so that 14 complex numbers or 28 channels of data are

collectec and recorded. The radar signals are short duration

pulses so that each set of 14 complex numbers represent one

spatial snapshot. A total o. 1024 snapshot data are recorded.

A phased array antenna pattern has a mainlohe beam-

width of 13.4 degrees (at the -3 dB levels) for a 14 senscr,

7.5 wavelength array. Consequently, two sources separated by

only ' degrees are not resolved with a conventional summed,

phased array, antenna pattern.

2.1 The Maximum Entropy Method (MEM)

Two methods of obtaining stable MEM wavenumber

spectra are employed for analyzing the array radar data.

One method employs averaged covar-iance matricies _,id rhe other

method utilizes averaged prediction error fi l.ter weights.

Both methods provide stable MEM wavenumber spectra with suffi-

cient resolution to identify the two closely adjacent sources.

Both averaging methods are describedl and demonstr-ated in an

earlier progress report dated T , Nov. ].979 (1) . The MEM

algorithm employed in this analysis uti 1 i zes the Burg tech-

nique, whLch substantially reduces the compwutiog effort

re-quired o f th conwcntiovn al ma t 1 matr ix e (At toI fCE r [it ] iLt io[

The Burg technique is also descril hd in detail in the earlier

urogrqese report (1).

2.2 The Maxyimum likeliheod Method (MLM)

For compariison purposes, the MLM is also us1ed to

analyz,• he array data. The MLM is evaluated using a predic-

tion error to rmvr]_.1ation proposedl by Buerg (2) , which is s imilar

-6H -
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to tha MEM spectral formulation. Because of the similarity

in formulation, the same predictiori error filter weights ars2

computed and used for both the MEM and MLM formulation. The

Burg technique is also employed i.. evaluating the MEM. The

MLM formulation is as follows:

N

P (k)' = N y -I i

P (k)k
r n W

n=n

where 2 n+I n=p 1 (y n+I) (Yn+l) 2

P• r' (autocorrelation of iata samples)

s= 1

[In

y are prediction error filter weights

k ý (2r/X) sin (0) (wave.iumbiir component)

0 6 signal angle of incidence

A -• signal wavelength j

2. 3 Results o• Analysis I
The MEM and MLM wavenumber spectra for the first

data snapshot (first set of 14 complex numbers) are shown in

Figs. (1) and (2) respectively. The ME. spectra of Fig. (1)

-69-
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is typical of such single snapshot spectra in that it contains I
many very sharp peax<s -of varying magnitude. In such spectra,

it is often difficult to determine which peaks represent signals.

However, there are three large peaks in the MEM snapshot spectra I
that are at azimuth angles in the vicinity of the two signal

incidence angles. The two signals are located at angles of

18 and 22 decrees. More accurate and reliable MEMN wavenumber

spectra are obtained if particular MEM parameters are averaged S
over several sets of snapshot data. Subsequent MEM wavenumber

spectra, which are shown, do incorporate averaging.

The MLM snapshot wavenumber spectra is shown in
Fig. (2) where one large and prominent peak appears at an •

angle in the vicinity of the two actual signals. In only one -

snapshot of data the MLM spectra is observ'ed to contain very

weak extraneous side (noise) peaks, but does not indicate the

presence of both signals. Averaging is incorporated in subse- I
quent computed MLM spectra with the hope of improving resolu-

tion in the MLM spectra.

Other MEM and MLM wavenumber spectra are shown in

Figs. (3) and (4) for which the covariance matrix is averaged

over 6 sets of snapshot data. The MEM spectr3 of Fig. (3) does

indicate the presence of two signals although one signal peak

is about 10 or 12 dB smaller than the other. The side peaks

are reduced in number and in magnitude in comparison with the

MEM snapshot of Fig. (1) . The averaging of the 6 covariance

matrices has improved the accuracy and reliability of the MEM

spectra, but the resolution remains insufficient. The MLM

spectra, which is computed for the covariance matrix averaged

over 6 sets of snapshot data, has not changed in any signifi-

cant way in comparison with the snapshot spectra shown in

F1.g. (2)_

The MEN wavenumber spectra, which is shown in Pig.

5, is computed using prediction error filter weights averaged

cver 6 sets of snapshot data. The MEM spectra of Fig. 5 does

indicate the presence of two closely adjacent sicnals, hut the

-70-
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resolution capability appears inadequate to accurately iden-

tify t'ie two signals. Side peaks are still quite numerous

and large in magnitude when coacared with the snapshot MEM

spectra of Fig. (1) t
Averaging does improve the resolution capability of

the MEM. The MEM spectra is shown in Fig. (6) where the pre-

diction error filter weights are averaged over 12 sets of

snapshot data. In Fig. (6) the two signals arc %ell resolved

and accurately located at azimuths of 18 and 22 degrees.

Also, side peak levels are reduced but are not suppressed

as well as with the MLM. One signal peak (at 18 degrees) is

about I dE balow the other signal peak although both signals

have the same power level.

In order to resolve the two signals with MEM spectra

computed with averaged covariance matrices, further averaging

is necessary. In Fig. (7) the two signals are resolved and

accurately located by averaging the covariance matrix of an

MEM spectra over 18 consecutive sets of snapshot data. However,

as in Fig. (6), one signal peak is about 1.5 dB below the

other signal peak. The MLM spectra computed using the same

averaged covariance matrix is shown in Fig. (8). The two

signals are not resolved in the MLM spectra, and are not

resolved even with further averaging of the covariance matrix

in which 27 sets of snapshot data are utilized.

3.0 Signal Detection

Because of the suectral whitening capability of

the maximum entropy method, toere is a large improvemernt in

the ratio of SNR (out) to SNR (in). In order to demonstrate

the detection capability of the MUM, a typical signal-to-

c]1]i-ter environment is simulated for a doppler radar receiver.

Doppler radar clutter is simulated as shown in Fig. (9) where

randum phased clutter bands ha power levels typical of ground,

rain, and interference clu'tei Such a clutter model has been

-7 1-U
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used previously by Sawyers (3) in his demonstration of adapt-

ive filtering. A signal having a 0 dB SNR is located between

the clutter at the frequency ratio of .375 as denoted by the

arrow in fig. (9). The signal is detected as shown in fig.

(10) by applying MEM to several sets of 32 data samples and

using 24 filter weights. The strong clutter bands are very

effectively whitened by MEM such that the largest background

peak in fig. (10) is about 10 dB below the signal peak level.

Similar results may be obtained for any signal location.
For example, in fig. (11) a signal located at the center of

the interference clutter (.65) is equally well detected again

with MESA applied to consecutive sets of 32 data samples

using 26 filter weights. In both fig. (10) and (11) the MEM

filter weights are averaged over 30 consecutive sets of 32

data samples. While considerable averaging is used to achieve

the results indicated in figs. (10) and (11) , less averaging

of fewer filter weights may also achieve satisfactory signal

detection, but with less resolution capability.

4. 0 Summary

The maximum entropy method is effective in resolving

signals located within the mainlohe of a conventional- antenna

pattern. However, the MEM is accurate and stable only if some

form of parameter averaginrf is utilized, As demonstrated, the

MEM as compared to the MLM has superior rsolution, but the

MT.M appears to more _ffL-ctively whiten the background (nouso)

spectra. Previous progress reports issuedl under tnis investi-

gation contained MEM spectra which were computed using only

simulated data. In this report all MEM spectra are obtained.

using actual radar signals received by a 14 sensor linear array.

Previous simulated data cont-ained -imulatel Gaussian, .hi-to

noise, out in this report the rollected radar 'Ial a contains

typical receiver and sensor noise and dinsort fnn. It is re--

assuring to know tha' the MEN is effective in osoliing closely

-72 -j
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adjacent signals mixed with either simulated white noise or

with actual and typical electronic system noise spectra.

The results achieved with the MESA doppler radar

detector are most promising. However, such e:,ceptiornal

results did require an average of over 32 sets of computed

prediction error filter weights. Real time applications may

not allow for such a large average. Decause of the excellent

spectral whitening characteristics that are exhibited by the

MLM, perhaps the P4LM is a more promising technique for real

time doppler radar detection. Either MESA or MLM appear to
offer considerable improvement in radar signal detection.

Nt
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RANDOM DATA SAMPLING

Introductior

Random data sampling may sometimes be a useful sampling

technique when estimating power spectra (1). For example, the

cost of a large antenna array may be significantly lowered, by

reducing the number ot antennas (data samples) and intentionally

undersampling through the use of a random distTribution of anten-

nas. Random data 'sampling may also be cequired if data samples ,:

necessarily have a random distribution. For example, radar an-

t,'nnas or acoustical sonobouys may be dropped from the air and

permitted to fol] freely to the ground or water, and land in a

random planar distribution.

With use of random data sampling, the siide lobes of a Four-
- ier power spectia have a random distribution in both number and

location. However, tht typical. Fourier spectral characteristics!

such as resolution and side lobe levels may he retained in an av-

erage of many such F,-lrier power spa-ctra computed us i)ig random
'a sampIi.jg. Uiseful Fourier power spectra also resul.t from random

data sampling even with very sparse (undersampled) data sets.

It is questionable whether random data sampling i.s offec.-

tirye when the maximMum entropy method (MEM) is used to cosmpute an
estimated power spectra, Examples of 1ioth L1te Fouli icr and MEi

power spucti- a a-e computed tlsi s random iaL t• samp]ilrig to (demon--

strafe the effectiveness of random data samplintg wit-h these two
* power specttra estimation techniques

Examples of Fourier Antenna Patterns

bourier antenna patterns may be computed by taking the

spcaiti al Fourier trans form ef si 1gnails inci dent to an "tenna array.

"'he Fourier transform of NW spatial data moints y is: as follows:

N -b
X (k) Y - n(N

'4
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where y is the nmca!,sued cia La anid k is the s igria 1 wavenuibiiL-o de--

J;.ined as follows:

k (2wr/A sinCO)

ik x ifý

0, A0 1+ 1

IThe ampiA. Lodet, wave le.ng tb, am 1 aug ie of Hiue ýilcm i dti eL :gnat i!;

r.'spuc LiVel 
11Tel 13h~ y A, A , and~ 0 . The no isr. c1Mij)UAU(Luil 0 1) has a

Gaussian 1 i- i ot in -,indl the ho 3.3 )hJl. SIS'P ha) 11-i' a1 Wlcltoii-( i et

button. The N array ant(eunas- ccr di__-Loft ibut-Žt at. osi Lion.IIs x a long

a one dbin ens lana.!. axy i q T xi a r andoto I. y Ii s Li: 1.blxte ante~nna a r ra-ýy

them plos Iitions x a re I inca Led( wi Lb @(314L I poa. 1 10- b L Iity -ILM 1. IV a 10114'

of le ugtlh I accordi rigj Lo a wh i-Lu 01.5 LrJ bthu.01)I tenelt 1.f00

The raco It1i( og ourift r an~t:_1AInarltZnIcnpu-o tmin ' tricant-

r.orn samipling 119 11 r shIown in.11~ 1-3. In thme $71"'t :0- ITIJ( ofit~i~ Pic).

1a sig(nal i.s- IJeteklre wi-th 10 irandominly i ialdantennas l)ca-

t-.(oI in1 a ot] j lit l ;i HO arr y 113, 1.0l-ff Ll tOtl II(U(cjJI 1 f Ht P WaLvO OlengtIU:;

Stelube it.: nc ;E not icably hi ghor than thus' o.btairnod wi. i~

hIca l ýij -- wVej2lng Il !ii sattyj 11(4g. Howeve r", i-I n rio :vei-:ag- of ( 10 uc;l(i ac

tettlit pa.Il I :;E S L.1ar rs i. l l .,t II pn .lt m03 .,Ilobl,1 i 1 'i-,'l.

has ý du x ; Al. 1 HIJI; 1.t!ivtj I(A hw iý tit t 1 i utita~m -10( OttH .Ž u I.w lie , TiL 1)

oi~n).I . 1"1- 1 lt01r 'Vf) Oý glj ig 0.TOF!-', l.ll aIttelt-Ž iii- J.)It It-otyt; Ji-I I EO II t A (I

Lowersilolobze' I u e 1s appruac hinil the -- 1-3 .6C (ill iti. ltnium 1 tvi I.

Th W i~d thc oF the motinl ].ubeý Iin oxaiipIeE -Ii s13w: 1 ft I anld

2isalneu cl:th3 wi~dth o)btrlciec nod wth ha'lIf a" -cr LbI

s3Lilp 1.I 11 .g Only the arc Lonna paLtoern s'ide !oe tI rco tInt t S S c-gij I Hi -

Cailf tlý 0 1 a Lf: -ed( when uigrandom doi la samp ig J .t Vs Lt th 1-d am

pl e on aver age of 10 a nt~e 130 patterns 1.3 fl3GWiowi nI in w hore.

e'ach Fourier- antenna~ pattern tsF conmputed ostingj a ver y sa dt

stcons i; 1: 1 ny ot on fy 4 da La sampyles , whi-cli are randomly CIIstrb

eit- iowe Ove a qj (15 he_ diumen c iou of 83 walve P-(TI_Tnt- s ill1 lenglth. 'The r e--
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sultant averaged antenna pattern is surprisingly good, w.hen it is

considered that the detected Gigna] is und.rsampled by a factor of

tour. S
Examples of MEM Wavenumber Patterns

Because the maximum entropy method may he derived using

the discrete Wiener prediction filter (2), it is unlikely that

meaningful data predictions arie possible with random datLa sampl-

ing. For example a predicted signal R is given by the discretein
convolution as Follows:

N
S= ): b x C2)

M n rn-n(3

where the data set x must be a set of uni tormly sampled data.m
If only a relatively sma1.l number of data samples a.e mis-sing1, theŽn

cqn. 3 still may provide useful predict ed data Croi which the pre-

diction error may be minimized. However., if th eintiiu WAtth set

is obtained using random sampling, then the Rita noe q predlLcted

using eqn. 3, is not expected to lhe very mea ingit ii. [•. Sincm t-he

prod iction -. l ter h is derived from a Winnumi e., "'rror dr ivu with in
eqn. 3, the prodicr tion filter b n may a.lso he. di an ini_? vci( ('l i. l-tr

if the data sot xI is derived us itng random data sampiliii.

'Thu MEM iI a -l0pol0 wa'\w uiiube;r .';''C i . iu i.&it is, 'ti anucs is,

pr'e.:,'ul. any a.ppareint p erobliei W fi i h use+ "F iidl'iii 3, t ,tl[J n ma Lir , nin 't,

the MEN!M w'LVCin l)-iw' ,p l-.: ra kncr- I t ion' vu(ii]f. iw ontly a ,i c-;' d' I'

Fourier lefrans.form of the pre+di ctrion Filter h as5 .:ii•uC)•t:
ii

P(k) (- / L -/ L X (4)
0 1 u,

However, sincme the prfedict;ion Filtzei r h iq .Mi al'1.y WC) lii' in orror,

the MEN power speCtra as givecini by eqn. 4 aiiy also not heI_ v' ry

tani fl jfili when i2,')iii)ito Od us in ,: random ilaivi ;ad l)] if. I'xuiatl , "'f

MEM waventomber specfrna are lui•onost-.ratut Qu' t"iq;s. 4-6, wtu,',i tf-he'

First example is a MEN snapshot wavu•'itiiiiljet S)Ltp.'iti (mf•limiipu( i i ¶Ih

un i formni C[a samp si lirni. 1 ihg., eh r MEN! wiv i i']Iln ';fi'i't.iat SilicWll ,1' I

VAi
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I
are computed using random d .ata sampýling.

The signal is accurately detected in Fig. 4 by an 8 wave-

length linear antenna array having uniform half-wavclength antenna

spacing. The MEM wavenumber spectra shown in Fig. 5 is computed

using 16 antennas randomly spaced along a straight line that is 8

wavelengths long. While both snapshot wavenumber spectra shown in

Figs. 4 and 5 are computed for a signal incident to the antenna

array at 30 degrees and with SNR of 20 dB, only the MEM spectra

computed with uniform half-wavelength sampling accurately detects

the signal. The MEM wavenumber spectra shown in Fig. 5 indicates

that a signal is detected at about 16 degrees. Other MEM spectra

computed with random data sampling (not shown) als contained

similar false alarms. An average of 6 such MEM wavenumber spectra,

where each spectra is computed using random data sampling, is

shown it Fig. 6. Even though 16 antennas are located randomly

along a straight line having a length of 8 wavelengths, neither

the individual 6 computed spectra or the average spectra indicated

a signal detection in a 6 degree window about the signal angle of

30 degrees. The averaged MEM wavenumber spectra shown in Fig. 6

contains only false alarm peaks.

As anticipated, the MEM wavenumber spectra computed using

random data sampling are not useful spectra, since MEM toes require

the use of uniform data sampling at minimal half-wavelenath inter-

vals. Of course if it is cossible to obtain accurate estimates

of a uniformly spaced data set using some extrapolation method.-

then useful MEM spectra could conceivably be compute(, from a ran-

dom data set. It is doubtful that any useful spectial estimates

can be obtained witih any spectral estimation technique based upon

the prediction filter, if random data sampling is utilized. How-

ever conventional Fourier spectral estimation techniques do provide

useful spectra using randomly sampled data.
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THE W-K SPECTRAL ESTIMATTON TECHNIQUE 3

Introduction

The maximum entropy spectral analysis (MESA) tech-

nique and the autoregressive (AR) spectral :nalysis technique

are both limited in accuracy and stability cy increasingly

noisy data. The MESA and AR techniques may be unnecessarily

noise limited due to the definition of the Wiener prediction

error, which is minimized in both techniques. It hay been noted

(1) that the conventional definition of the prediction error

actually contains two error components. One -rror component

is the actual prediction error inherent in the predicted data

set Xm consisting of M data points. The other component error

is the noise present in the actual M data samples x

The prediction error may be redefined so that there

is only one error component, i.e. the inherent prediction error.

By redefining the prediction error, it is anricipated that spec-

tral estimation accuracy and stability of the resulting spectral

estimator will be substantially improved at the lower signal-to-

noise power levels. The resultant, new, spectral estimation tech-

nique is referred to as the Wiener-King (W-K) spectral estimator.

Prediction Error Definition

The conventional definition for the time dependent

prediction error e is as follows:

e -x for (m=l,M) (i)

where there ar-e M data samples xm ano M Uara points

Xm The predicted data points are defined as follows: I
=m n x1 n for N < M (2)

where there are N prediction filter coefficients an (n=L,N).

-96- f
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The c(-nventional prediction error e is t__Iction

of the noisy data as well as the predicted data. The data noise

may be readily eliminated by redefining the prediction error as

a functiorn of noise free spectral romponents. A spectral com-

ponent 4, which has frequency f is defined by the exponential
Ym p

function as follows:

p i2,ff m (Žt)()

ym = e P(3)

The "new" noise free prediction error ep is defined as follows:

eP p - xm Ym m

ep : i2T•f re(At) - Za x();
-m nt &n ()I

The "new" prediction error contains only one error comporent,

which is the inherent error present in the prediction function

Xm. A total mean squared prediction error may be computed by

"summing the time depend.L oquarod orror computed for all M pre-

dicted data points.

Prediction Filter

A "new" -orediction filter may be defined Iby,, mini- I
mizing a redefined total mean squared prediction error. A

total mean scuared nrediction error FP may be r fined as follows:

ep p
M, = ! - M

S(rP )* (d*P ~ 5

-.- n m [ m )* - a m -

m I

I'll M IT, U<M

-/ 2 -. U
t ss



Tho total m-ean squared prediction error is expressed in detail I
by combining eqns. (5) and. (6) as follows:

M!
EP -i(21+I)] Z TP(yP)* 7 a x (y-)*

n-M nm-_n r-n m

N M1N N
Sa* 2 x*_ Y + 2 2 a a* x nX* (7)

n=I n m.-M k=l n=l n k M=- -N

By utilizing the definition of the autccorrelatioo and cross- i
correlation functions, expression (7) is simplified as follows:

N N N N

EP P - a rp (n) - 2 a* rp (n) + a 2 anr(k-n) (8
N n xy 1ol n fx k=l n~l n "

where the autocorrelation of function yP is rp, the autocorrela-.
y

tion of function x is r•, and the crosscorrelation of the func-

tions yP and x is r and r
xy yx

The total mean scuared prediction error may be mini-

mized with resoect to the unknown ftlter coefficients a as follows:n

r4<p -r T  () ± far (n-a 0 (9)
Sn=l n x

where Z UN.

The resultant expression eqn. (9) is a set of N equa-

tions that may be simulta4neously solved for the N filter coeffi-

cients The N equations m,,iay; wnritten as follows:

,. .- .- .- -.. ...
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-, arx(0) + a 2 r(1) + " + a rx(N-'i) - rp (1) rnN x yx

£ = 2, air(-) + ayr (0) + - i (N-2, r§ (2) r

(10)

= N, a r X(-N+1) + a 2 r (-"N+2)±+ + a r (0) = rP (N)

The N equat-.ons that define the prediction filter coefficients

an may also be expressed in matrix notation as follows:
nm

[a a 2  a, " r ra(1) - x(Y- . .1x 2 0 1)XY

rx(l) r, (0, r (N-2) rp (2)

r x(N-1) rx(N-2) rx(0) J (NJ -q

where it is noted that r,(-n) = r (n)

The matrix equation qi-en by eqn. (11i may be

written in shorthand notation as follows:

a r = �� (12)

The solution fort the set of filter coefficients is obtained

by invoerting the autocorrelation matrix r an- soling for

the coetfj.cients as follows:

-AS-.



It is necessary to solve eqn. (13) for all coefficiencs

(air a), .. a) for every spectral comDorent f of inter-
est. However it is possible to determine spectral regions

of interest by simply computing the crosscorrelation vec-

tors rp at every frequency f . In this way it is necessary
yx p

only to solve for the prediction filter coefficients in

spectral regions where the crosscorrelation vectors indicate

a strong correlation.

Power Spectra,

Consider another prediction error im which is de-

fined to include the unknown signal amplitude A i.e.

- A ep (14)in p m

- A y xpm p ml

The .iourier transform of eqn. (15) results in an expression

for the spectral amplitude A as follows:

r7N 2fn(At

A ,(f-f) - X(f) Z a e

0 (fi)(l

[i- X(f) Z ae eJ

The power spectra P(f ) is giv:en b, the following I
exporession :

P(f) -A

-0 I
-. . ...lo..o--; • - :_



ý4!- -

P N -i2,rf n(At)(f (17)

1 -X(f) Za e p 2

p nn=l

where 7(f), which is the Fourier transform of the prediction

error m may be evaluated in the sFectral region void of sip- I:
nals, i.e. f / f .For the present it useful to consider the

all pole representation of the W-K power spectral technique by

evaluating the ratio of P(f p)/ P(f).
It is anticipated that the W-K all pole power ratio spectra

compuved with eqn. (17) will be more stable but just as accurate

as comparative spectra computed with MESA. The formulation of

the W-K spectral estimator as given by eqn. (17) differs from

that of MESTA in that the Fourier transform X(f p) of the data set

is utilized as indicated in eqn. (17). Of course the prediction

filter coefficients a are different from the prediction coef-
n

ficients used in MESA.

The presence of the data transfer function X(f ) is a sta-

blizing factor in the power spectral eqn. (17' . Spectral reso-

lution and accuracy of the W-K spectral estimator are expected

to be comparable to similar characteristics of MESA, since both
snectr-al estimation methods have a similar all pole formiuliza-

tion. However the W-K spectral, esti.mator is expected to have

better stability and whiter spectra than that obtainable with

use of the MESA tecnnique.

Example Wavenunher Power Spectra

S 5-\ Wd'1'f1ILUCL- pUWtUt Spet- i [d !uiV 19?' U[td i5Ql K P qn. j

(17) by introducing the wavenumber k and spatial dimension x

with aid of the variable relationships that follow:

k- V (27f)

x t

where V is the wave velocit',,. With the inrlic2ted change of

-101- U
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variables, examples of W-K wa'enumber power spectra are compu-

ted fcr only a few simple signal and noise conditions. At this

time the W-K spectral estimation technique is evaluated only to

indicate that the W-K spectral estimator is a viable and useful

method for obtaining stable, high resolutiDn spectral estimations

with only a single (snapshot) set of data.

A single signal is shown detected at 28.5 degrees in Fig. 1

using a 181 point W-K wavenumber power (ratio) spectra as given

by eqn. (17). The simulated signal is actually incident to an 8

element linear antenna array at an angle of 30 degrees and with

an SNR of 20 dB. The W-K spectrum shown in Fig. 1 is computed

usinc only 3 filter coefficients. The snapshot spectra is well

whitened by the W-K estimation technique althodgh the signal

location is imprecise with an error of 1.5 degrees. The same sig-

nal and noise model is used to obtain another W-K wavenumber

spectra using 4 filter coefficients as shown in Fig. 2. Again

the W-K spectra is well whitened, and again the signal peak is

located with the same imprecision. A comparison of these two

initial W-K spectra indicate a smaller filter size may provide

better noise suppression by almost 10 dE in the examples given.

For comparison a MESA wavenumber spectra is computed for

the same signr I and noise model used in the two W-K spectra ex-

amples. However five filter coefficients are used in the compu-

ted MESA example to better illustrate the large noise peaks

that frequently appear in MESA snapshot spectra. It should be

noted that whitened spectra do result when MESA is applied to

covariance matrix data that has been averaged over several snap-

shots of data. The example MESA wavenumber spectra is shown in

Fig. 3, where indeed 5 large peaks appear in the spectrum, but

only the peak located at about 31.5 degrees is representative

of the signal.

,n another example two signals incident to the antenna

array at -30 and 30 degrees are shown correctly detected by the

W-K spectral estimator in Fig. 4. The overall W-K spectra is

well whitenod with use of 5 filter coefficients. For comparison

-102-
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the same two signals (SNR = 20 dB) and noise are shown in Fig.

5 detected by a conventional Fourier wavenumber antenna pattern.

The strong Fourier side lobe structure that is present in Fig. 5

is only very mildly apparent in the W-K all-pole wavenumber spec-

tra shown in Fig. 4. If the two spectra of Figs. 4 an~d 5 are

superimposed, the Fourier side lobe structure is found to occur

at the same spectral locations of the W-K side peaks. This simi-

larity in side peak location is an indication of the stablizing

influence brought about by the presence of the Fourier transfer

function X(f ) that appears in the W-K spectra formulization.

The resolution capability n)f the W-K spectral estimator

7 is illustrated in Fig. 6, where two closely adjacent signals

(6 degrees apart) are resolved by the W-K spectral estimator.

For comparison purposes, the same two signals (SNP = 20 dB) are

shown detected in Fig. 7 as a single peak in a conventional

Fourier antenna pattern.

As had been anticipated, the W-K all pole spectral esti-

mator is a very stable, high resolution spectral estimation

technique. In all examples shown the computed wa-enumber spectra

is well whitened by the W-K spectral estimator. Spectral

whitening is always achieved with only one snapshot of data.

However some apparent improvements in this original version of

the W-K spectral estimation technique are indicated by the ex-

ample spectra. The small, numerous peaks that are often evi-

dent in the W-K spectra are a prnblem when they occur in the vi-

cinity of a signal peak. In such instances the presence of the

small, noisy peaks may be misintrepreted as a collection of

several very close signals. Perhaps an improved version of -he

½-K estimator, or a simple correction of some overlooked program-

ming error may serve to eliminate or at least minimize the pres-

ence of the small annoying noisy peaks.

The derivation of the W-K spectral estimator has util-

ized only the forward prediction error. Perhaos a minimiza-

tion of the total (forward and backward) prediction error will

serve to further improve the W-K soectral estimator.

-108-
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THE ALL-POLE AND ZERO-POLE

FOURIER SPECTRAL ESTIMATOR
4

"Introduction

The Wiener prediction filter is useful in deriving

the high resolution maximum entropy and W-N( spectral estima-
tion techniques. Both of these spectral estimators employ
prediction filters that are defined by minimizing a mean

r squared Wiener prediction error. The evaluation of these

prediction filters may require the computation and manip-

r ulation of large matricies, which usually requires consid-

erable computational time. j
While these spectral estimation techniques have very

unique and useful properties, it is also possible to obtain

another useful spectral estimator by utilizing a very simple,
4 and quickly computed, prediction filter. The resultant spec-

tral estimator is named the "FPurier spectral estimator", be-

cause it employs only the Fourier transform of the data set.

The Fourier spectral estimator (FSE) may be derived either as I
an all-pole or as a zero-pole model. Both models are pre-

sented in the analysis that follows,

Wiener Prediction Filter

Nerrowband spectral components in a detected sional A

4
may he charrýcterized with use of the Wiener prediction filter

4 as follows:

1A c (t) - e(t) (i)
: P

where A and w are the amplitude and frequency of a narrow-
. p p

band component, and e(t) is the spectral prediction error.

The prediction signal k(t) may be taken as the convolutiop

41, of the prediction filter b(t) with the measured function x(t)

,• -'1- 1
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as follows:

Z(t) = _b (T-t)X(T•,dr (2)

Filter Definition

The prediction filter b(t) is usually defined by mini-

mizing the mean squared prediction error. However it is much

easier to choose a prediction filter that yields a zero pre-

diction error at the exponential frequency wp. The filter

is defined in the frequency domain by combining the Fourier

transforms of eqns. (1) ari (2) as follows:

A (-wp) = B(wt)X(w) - E(w) (3)

If E(w)-O as •x-•pn then it follows from eqn. (3) that -

B(p ,t) = A / X(w p) (4)

All PorI Solution

Even though eqn. (4) is correct, wp is not known and I
it. is not possible to evaluate X(o ). However, for high SNR

p
values X(op) is approximately equal to its maximum magnitude X0 ,

which is more readily determined. The prediction filter trans-

fer function may be specified approximately as follows:

B(0 ,t) -- A / X (5)

By combining eqns. (3) and (5) the narrowband component

amplitude is given as follows:

A A X(w ) / X - Ee () (6)
p p P 0 p

A -L'(m ) / l-N /X 1(7
p pp 0

-112-
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where E' ( p) is the prediction error due to the approximate

value of the prediction filter transfer function used in eqn.

(7). An all pole, w~ite, spectral power ratio may be obtained

from eqn. (7) as follows:

IA /E'i 2  _ 1 / l _2 (,)

The frequency w p of the exponential components may be approxi-

mated by determining the complex poles of eon. (8).

Zero-Pole Solution

At spectral regions other than wp eqn. (3) reduces to

the following expression for the prediction error:

E(w) = B(w,t) X(w) (9)

The most obvious choice for the filter transfer function is

zero, however it may be more preferable to choose B(w,t) = 1.0,

so that

E ) = X(W) (10)

The choice of eqn. (10) permits other filter methods to be

applied for the elimination of strong interference signals,

that may otinerwise appear as a pole in eqn. (8). A zero-pole

Fourier power spectra results from combining eqn. (10) and

eqn. (7) to obtain an expression useful over the entire fre-

quency domain. The zero-pole Fourier spectral estimator is

given as fo!!ows:

A" X(a) / (A X(w)/X (11)
1p P
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Example Spectra

The conventional Fourier antenna pattern is compared
with several examples of the stable, all-pole and zero--pole

Fourier spectral estimator (FSE). All examples are snap-

shot antenna and wavenumber spectral patterns, that are com-

puted for signals of 20 dE SNR which are incident to an 8

element, linear, antenna array. The white, Gaussian ampli-

tude noise data is identical (IR=3) in every example pre-

sented.

The conventional Fourier antenna pattern for one

signal incident at 30 degrees is shown in Fig. 1. The same

signal is shown detected with the all-pole, Fourier esti-
mator in Fig. 2, and with the zero-pole Fourier estimator in

Fig. 3. Other comparative examples include two widely spaced

signals incident at -30 and 30 degrees that are shown in Figs.

4,5, and 6; cwo closely adjacent signals incident at 30 and

45 degrees, which are shown in Figs. 7,8, and 9. One other

set of examples (Figs. 10,11, and 12) show five :gnals, all

with the same powez level (20 dB SNR), incident at angles of

"-60, -45, 0, 30, and 37 degrees.

In all the examples shown, the FSE technique appears

to have improved spectral accuracy and improved resolution and

detection capability in comparison with the conventional Fourier

power spectral method. The derivation of the FSE technique

appears Lo indicate that these improved spectral character-

istics are more significant with increasing SNR levels.

In the Fourier antnnna "r ?ttern of Fig. 10, the signal

power levels of the three signals detected near 0, 30, and 37
degrees cre in error by several dB. These same errors are,

in effect, magnified by the FSE examples given in Figs. 11

ind 12. Consequently signal power levels indicated by either

F,'E technique, are in much greater error than the power levels

indicaced by the conoentional Fourier antenna pattern. It

may he difficult to measure either absolute or relative power

levels from computed FSE wave;iumber spectra.

J
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Perhaps all signal parameters may be more accurately

determined by using both the cor-rentional Fourier spectral

and the Fourier spectral estimat.-r techniques. Hopefully

the FSE detection, resolution, and spectral characteristics

may be determined in a future extensive analysis.
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